## M-CLASS

METAL SEATED BALL VALVES


Lockable tee-handle gearbox and actuated options

Dual live loaded packing sets eliminate stem leaks

Blow-out proof stem design ensures safety Pressures up to 4500\# class

Flanged, socket weld, butt weld, threaded and non-standard end connections

Ball and seats have the most advanced coating/surface hardening technology options available to provide the best
solution for critical applications
Metal ball and seats are lap matched
to provide bubble-tight shut-off

## A Cut Above

$$
\begin{aligned}
& 1 / 2^{\prime \prime} \mathrm{TO} 16^{\prime \prime} \text { standard port } \\
& 150 \# \text { up to } 4500 \# \\
& -270^{\circ} \mathrm{C}\left(-454^{\circ} \mathrm{F}\right) \mathrm{TO} 843^{\circ} \mathrm{C}\left(1550^{\circ} \mathrm{F}\right)
\end{aligned}
$$



## Bi-directional seating to handle back

pressures to the full pressure rating
of the valve

# ON/OFF VALVE 

The On/Off Ball Valve is an elite, made-toorder, metal seated ball valve, unparalleled in quality and performance.

They are designed for any combination of abrasive, corrosive, high temperature, high pressure, and high-cycle applications. Options include Vari-V and arcuate cut balls, exotic alloys, and scalloped seats. Not only do M-Class Ball Valves provide superior performance for the toughest applications, they are truly bidirectional and provide bubble-tight shut-off.


The Cryogenic Valve can handle temperatures as low as $-270^{\circ} \mathrm{C}$ $\left(-454^{\circ} \mathrm{F}\right)$. A bolt-on retrofit kit is also available.

Our Cryogenic Valves are designed to withstand temperatures of $-270^{\circ} \mathrm{C} /-454^{\circ} \mathrm{F}$ and have a minimum 12" bonnet extension to protect the actuator and handle from ice build-up. The valve features the patented M-Class Stem Sealing System, a detachable bonnet, and metal seats. M-Class Cryogenic Valves feature a drilled ball, to relieve pressure, and a fully grounded stem. A bolt-on retrofit kit is also available.


The Block+Bleed Valves provide bubble tight shut-off and are offered in single and double Block+Bleed configurations

Gosco's Block+Bleed Valves combine live loaded seat technology, the patented M-Class tripod and stem packing, and completely bi-directional sealing. This configuration makes our Block+Bleed Valves extremely versatile, enabling them to tackle the toughest severe service applications.


The 3-Way Diverter Valve provides bottom entry with flow, to the left ports or right ports, "Single-L" for $180^{\circ}$, or "Double-L" for $90^{\circ}$.

The 3-Way Diverter offers superior reliability in a metal-seated package. Configurations include a "Single-L Port" ball for $180^{\circ}$ applications, specifically for when there is no mix of the media between the two ports, and a "Double-L Port" ball for $90^{\circ}$ applications in which mixing is expected to occur between the ports. Whatever the application, the 3-Way Diverter Valve is guaranteed to outperform its competitors and surpass all expectations.


# VARI-V VALVE 

# The Vari-V Ball Valve offers precise flow control through a specific profile that is machined into the ball. 

When precise control of flow or pressure is required in a metal seated ball valve, the M-Class Vari-V Control Valve is perfect for your tough applications. Standard $10^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}$ V's are cut in to the ball for a complete range of CV's and control requirements. Custom profile V's are used for unusual applications requiring special flow characteristics.


## Linear-V



## High Turndown-V



Filler-V


## Control

At the heart of every Gosco M-Class control valve is the Vari-V ball. The profile of the $V$-ball determines the flow characteristic of the valve and can be changed to suit the application. $10^{\circ}$, $30^{\circ}, 60^{\circ}$ and $90^{\circ} \mathrm{V}$-balls are the most commonly used, but several other profiles are available. The transition between high flow and fine control with the Vari-V is extremely smooth.
is a slot in the ball that can be machined for precise flow requirements.
is used when you need maximum flow for filling followed by precise flow
to accurately control the levels.
maximizes flow in the open position, and provides fine flow
control when the valve is partially closed.


## Free

Custom V-balls are available for applications where specific flow requirements can not be met with the standard V-balls. Using Computational Fluid Dynamics (CFD), we can create a V-ball with a specific profile to fit any application. Anti-cavitation trim is also available. For examples of custom V-ball applications, including videos and specifications, visit www.goscovalves.com


## Slow

An arcuate cut is a profile in the ball that reduces velocity both when the valve opens, and as it closes. When a standard ball valve is in the first and last ten degrees of opening, the gap between the ball and seat is an elliptical shape. The velocities are very high (especially in the corners), and erosion occurs. With an arcuate cut, the opening on the ball is close to three times larger. This reduces the velocity by spreading out the flow through a larger opening, which ultimately reduces wear on the ball and seats. An arcuate cut ball is best utilized in abrasive and high cycle applications.


## Smooth

A common problem with metal seated valves is the build-up of material between the upstream seat and the body. Our approach to this problem is very different from traditional valve manufacturers. Their valve designs attempt to prevent media from getting behind the seat by sealing the outer edge and back of the seat. Our philosophy is the opposite: let the media flow behind the seat, as the seat's design allows material to escape just as easily. This is done with angled scallops at the back and outer edge of the seat. The size, steepness of the angle, and spacing of the scallops vary with the particle sizes and the pressure inside the valve.


## TRIPOD MOUNT

## The M-CLASS Tripod Mount is designed to eliminate the problems associated with traditional brackets

## Simple

No bracket - only a plate and coupling is needed

## Dead Centered

The mounting plate is secured between the C\&C machined tripod prongs and cannot move in any direction. This guarantees perfect alignment of the actuator to the valve.

## Easy to Assemble

The plate can be mounted on the actuator first, then the actuator will automatically be aligned by the three prongs.

## Perfectly Flat

Three points define a plane, meaning the actuator will not rock.

## Fully Visible

The double " $D$ " on the stem is easily seen, giving a constant visual indication of the valve's position.

## Open Between the Prongs

Allows full access to the packing adjustment without removal of the actuator.

## Insulatable

A minimum of 2" between the top of the flange and the tripod allows insulation to be installed without covering the packing adjustments.


## Stress

Finite Element Analysis (FEA) is used in Gosco Valves' design process to predict the behavior of a valve's components by subjecting them to varying loads. This ensures structural integrity. The analysis is based on variables such as maximum pressure and temperature inside the valve, and maximum actuator torque. The illustration shows the stress distribution in a body and bonnet assembly, based on FEA analysis.

## HardCore

## COATINGS



## BORONIZING



## CERAMICS



High Velocity Oxygen Flame (HVOF) is a thermal spray system that fuses a powdered metal feed (generally Chrome or Tungsten Carbide) onto a base material. In this process the oxygen flame, paired with a number of fuel gases, accelerates and propels the feed stock at supersonic speeds ( $1800 \mathrm{ft} / \mathrm{sec}$ or $549 \mathrm{~m} / \mathrm{sec}$ ) directly on to the base material. Temperatures can reach upwards of $2300^{\circ} \mathrm{C}\left(4172^{\circ} \mathrm{F}\right)$. When particles strike the base material, they form a "splat", quickly cooling to create a high density coating.

A thermochemical surface treatment in which Boron atoms are diffused into the surface of a base metal to form borides. It creates a new intermetallic layer with a hardness off the Rockwell C scale. The base metal is chosen to handle the temperature, abrasion and corrosion of the process, and has a superior wear resistance to that of coatings.

Gosco also manufactures trim sets from a variety of different ceramics including a proprietary Alumina/ Zirconia based ceramic. This type of ceramic offers the chemical resistance and hardness of an alumina, combined with the toughness of zirconia. It does not shatter on impact and is abrasion and thermal shock resistant.


temperature ( ${ }^{\circ} \mathrm{F}$ )
temperature ( ${ }^{\circ} \mathrm{C}$ )

## Material Ratings

F11: A 182 Gr. F11 CI.2, A 217 Gr. WC6


F22: A 182 Gr. F22 CI.3, A 217 Gr. WC9

temperature ( ${ }^{\circ} \mathrm{F}$ )
temperature ( ${ }^{\circ} \mathrm{C}$ )

F9: A 182 Gr. F9


## Material Ratings

SP \& DP: A 182 Gr. F51, A 789 Gr. S32750, A 789 Gr. S32760


SL: A 182 Gr. F316L


SS: A 351 Gr. CF8M, A 479 Gr. 316



| Valve Size |  | B | C | D <br> (diameter) | $E$ | F | G |  |  |  |  |  | Weight ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | 150\# | 300\# | 600\# | 900\# | 1500\# | 2500\# |  |
| 1/2" FP | 6.50/16.51 | 0.375/0.95 | 7.85/19.94 | 0.50/1.27 | 4.10/10.41 | 10.35/26.29 | 4.25/10.80 | 5.50/13.97 | 6.50/16.51 | 8.00/20.32 | 9.00/22.86 | 12.50/31.75 | 40/18.1 |
| $3 / 4^{\prime \prime}$ SP | 6.50/16.51 | 0.375/0.95 | 7.85/19.94 | 0.50/1.27 | 4.10/10.41 | 10.35/26.29 | 4.62/11.73 | 6.00/15.24 | 7.50/19.05 | 9.00/22.86 | 10.00/25.40 | 12.80/32.51 | 45/20.4 |
| 3/4" FP | 8.00/20.32 | 0.5/1.27 | 9.18/23.32 | 0.63/1.60 | 4.70/11.94 | 12.28/31.19 | 4.62/11.73 | 6.00/15.24 | 7.50/19.05 | 9.00/22.86 | 10.00/25.40 | 12.80/32.51 | 70/31.8 |
| 1" SP | 8.00/20.32 | 0.5/1.27 | 9.18/23.32 | 0.63/1.60 | 4.70/11.94 | 12.28/31.19 | 5.00/12.70 | 6.50/16.51 | 8.50/21.59 | 10.00/25.40 | 11.50/29.21 | 13.30/33.78 | 76/34.5 |
| 1" FP | 8.00/20.32 | 0.5/1.27 | 9.38/23.83 | 0.63/1.60 | 4.70/11.94 | 12.48/31.70 | 5.00/12.70 | 6.50/16.51 | 8.50/21.59 | 10.00/25.40 | 11.50/29.21 | 15.00/38.10 | 82/37.2 |
| 11/4" SP | 8.00/20.32 | 0.5/1.27 | 9.38/23.83 | 0.63/1.60 | 4.70/11.94 | 12.48/31.70 | 5.50/13.97 | 7.00/17.78 | 9.00/22.86 | 11.00/27.94 | 12.50/31.75 | 15.50/39.37 | 85/38.6 |
| 11/4" FP | 11.00/27.94 | 0.75/1.90 | 13.23/33.60 | 0.88/2.24 | 6.30/16.00 | 17.48/44.40 | 5.50/13.97 | 7.00/17.78 | 9.00/22.86 | 11.00/27.94 | 12.50/31.75 | 16.50/41.91 | 160/72.6 |
| 11/2" SP | 11.00/27.94 | 0.75/1.90 | 13.23/33.60 | 0.88/2.24 | 6.30/16.00 | 17.48/44.40 | 6.50/16.51 | 7.50/19.05 | 9.50/24.13 | 12.00/30.48 | 13.50/34.29 | 17.00/43.18 | 173/78.5 |
| 11/2" FP | 11.00/27.94 | 0.75/1.90 | 13.93/35.38 | 0.88/2.24 | 6.30/16.00 | 18.18/46.18 | 6.50/16.51 | 7.50/19.05 | 9.50/24.13 | 12.00/30.48 | 13.50/34.29 | 17.60/44.70 | 170/77.1 |
| 2"SP | 11.00/27.94 | 0.75/1.90 | 13.93/35.38 | 0.88/2.24 | 6.30/16.00 | 18.18/46.18 | 7.00/17.78 | 8.50/21.59 | 11.50/29.21 | 14.50/36.83 | 14.50/36.83 | 17.75/45.09 | 196/88.9 |
| 2" FP | 12.20/30.99 | 0.75/1.90 | 13.93/35.38 | 1.00/2.54 | 5.92/15.04 | 18.68/47.45 | 7.00/17.78 | 8.50/21.59 | 11.50/29.21 | 14.50/36.83 | 14.50/36.83 | 17.75/45.09 | 220/99.8 |
| 21/2" SP | 12.20/30.99 | 0.75/1.90 | 13.93/35.38 | 1.00/2.54 | 5.92/15.04 | 18.68/47.45 | 7.50/19.05 | 9.50/24.13 | 13.00/33.02 | 16.50/41.91 | 16.50/41.91 | 20.00/50.80 | 250/113.4 |
| 21/2" FP | 14.50/36.83 | 1.00/2.54 | 15.95/40.51 | 1.25/3.18 | 6.01/15.27 | 21.35/54.23 | 7.50/19.05 | 9.50/24.13 | 13.00/33.02 | 16.50/41.91 | 16.50/41.91 | 0.00/50.80 | 375/170.1 |
| 3" SP | 14.50/36.83 | 1.25/3.17 | 15.95/40.51 | 1.25/3.18 | 6.01/15.27 | 21.35/54.23 | 8.00/20.32 | 11.13/28.27 | 14.00/35.56 | 15.00/38.10 | 18.50/46.99 | 22.75/57.79 | 405/183.7 |
| 3" FP | 14.50/36.83 | 1.25/3.17 | 16.18/41.10 | 1.50/3.81 | 6.01/15.27 | 21.48/54.56 | 8.00/20.32 | 11.13/28.27 | 14.00/35.56 | 15.00/38.10 | 18.50/46.99 | 22.75/57.79 | 395/179.2 |
| $4 "$ SP | 14.50/36.83 | 1.25/3.17 | 16.18/41.10 | 1.50/3.81 | 6.01/15.27 | 21.48/54.56 | 9.00/22.86 | 12.00/30.48 | 17.00/43.18 | 18.00/45.72 | 21.50/54.61 | 26.50/67.31 | 445/201.8 |
| 4" FP | 6.00/40.64 | 1.25/3.17 | 20.00/50.80 | 1.75/4.45 | 9.50/24.13 | 26.60/67.56 | 9.00/22.86 | 12.00/30.48 | 17.00/43.18 | 18.00/45.72 | 21.50/54.61 | 26.50/67.31 | 675/306.2 |
| $6{ }^{\prime \prime} \mathrm{SP}$ | 16.00/40.64 | 1.25/3.17 | 20.00/50.80 | 1.75/4.45 | 9.50/24.13 | 26.60/67.56 | 15.50/39.37 | 15.88/40.34 | 22.00/55.88 | 24.00/60.96 | 27.75/70.49 | 36.00/91.44 | 910/412.8 |
| 6" FP | 20.00/50.80 | 2.00/5.08 | 26.60/67.56 | 2.50/6.35 | 11.84/30.07 | 36.35/92.33 | 15.50/39.37 | 15.88/40.34 | 22.00/55.88 | 24.00/60.96 | 27.75/70.49 | 36.00/91.44 | 1730/784.7 |
| 8' SP | 20.00/50.80 | 2.00/5.08 | 26.60/67.56 | 2.50/6.35 | 11.84/30.07 | 36.35/92.33 | 18.00/45.72 | 19.75/50.17 | 26.00/66.04 | 29.00/73.66 | 32.75/83.19 | 40.25/102.2 | 1960/889.0 |
| $8^{\prime \prime}$ FP4 | 24.00/60.96 | 2.25/5.71 | 35.46/90.07 | 3.00/7.62 | 14.90/37.85 | 48.21/122.5 | 18.00/45.72 | 19.75/50.17 | 26.00/66.04 | 29.00/73.66 | - | - | 3200/1451 |
| $8{ }^{\prime \prime}$ FP5 | 28.00/71.12 | 2.25/5.71 | 39.75/100.0 | 3.50/8.89 | 16.30/41.40 | 53.50/135.9 | - | - | - | - | 32.75/83.19 | 40.25/102.2 | 4200/1905 |
| $10^{\prime \prime} \mathrm{SP}^{4}$ | 24.00/60.96 | 2.25/5.71 | 35.46/90.07 | 3.00/7.62 | 4.90/37.85 | 48.21/122.5 | 1.00/53.34 | 22.38/56.85 | 31.00/78.74 | 33.00/83.82 | - | - | 3400/1542 |
| $10^{\prime \prime} \mathrm{SP}{ }^{5}$ | 28.00/71.12 | 2.25/5.71 | 39.75/100.0 | 3.50/8.89 | 16.30/41.40 | 53.50/135.9 | - | - | - | - | 39.00/99.06 | 50.00/127.0 | 4700/2132 |

For valve sizes larger than 10", please contact Gosco Valves for dimensional information.

1) Mounting dimensions can be changed to suit custom actuator configurations
2) Please visit www.mclassvalve.com to download up-to-date dimensions and sizes
3) Exease visit www.mclassvalve.com to download up-to-date dimensions and sizes
4) Except $8^{\prime \prime}$ and 10 SP", weights are based on 1500 \# class valves (contact Gosco Valves)
5) Except 8 " and 10SP", weights are based on 1500 \# class valv
6) Dimensions are for $150 \#, 300 \#, 600 \#$ and 900 class valves
7) Dimensions are for 1500 \# and 2500 \# class valves
8) NPT Ends also available, contact Gosco Valves for dimensions
9) Dimensions are approximate


| Valve Size | Vari-V | 100\% | 90\% | 80\% | 70\% | 60\% | 50\% | 40\% | 30\% | 20\% | 10\% | Non Vari-V ball C, 's |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/2" FP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 2.95 \\ 5.76 \\ 10.13 \\ 15.28 \end{array}$ | $\begin{aligned} & 2.36 \\ & 3.99 \\ & 6.93 \\ & 9.83 \end{aligned}$ | $\begin{aligned} & 1.94 \\ & 3.15 \\ & 4.56 \\ & 6.29 \end{aligned}$ | $\begin{aligned} & 1.53 \\ & 2.22 \\ & 3.18 \\ & 4.10 \end{aligned}$ | $\begin{aligned} & 1.19 \\ & 1.46 \\ & 2.02 \\ & 2.57 \end{aligned}$ | $\begin{aligned} & 0.84 \\ & 0.89 \\ & 1.32 \\ & 1.58 \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 0.51 \\ & 0.73 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 0.13 \\ & 0.14 \\ & 0.15 \\ & 0.16 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.02 \\ & 0.03 \\ & 0.03 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 23 |
| 3/4" SP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 3.01 \\ 4.96 \\ 8.16 \\ 11.18 \end{array}$ | $\begin{aligned} & 2.22 \\ & 3.62 \\ & 5.84 \\ & 7.73 \end{aligned}$ | $\begin{aligned} & 1.84 \\ & 2.89 \\ & 4.54 \\ & 5.57 \end{aligned}$ | $\begin{aligned} & 1.31 \\ & 2.13 \\ & 3.00 \\ & 3.87 \end{aligned}$ | $\begin{aligned} & 1.01 \\ & 1.45 \\ & 1.82 \\ & 2.39 \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 0.83 \\ & 1.18 \\ & 1.36 \end{aligned}$ | $\begin{aligned} & 0.49 \\ & 0.53 \\ & 0.67 \\ & 0.83 \end{aligned}$ | $\begin{aligned} & 0.12 \\ & 0.13 \\ & 0.14 \\ & 0.15 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.04 \\ & 0.04 \\ & 0.04 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 15 |
| 3/4" FP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 4.27 \\ 8.43 \\ 16.84 \\ 27.63 \end{array}$ | $\begin{array}{r} 3.55 \\ 6.45 \\ 11.09 \\ 17.52 \end{array}$ | $\begin{array}{r} 2.70 \\ 4.88 \\ 7.59 \\ 11.28 \end{array}$ | $\begin{aligned} & 2.13 \\ & 3.51 \\ & 5.12 \\ & 6.70 \end{aligned}$ | $\begin{aligned} & 1.55 \\ & 2.18 \\ & 3.17 \\ & 4.14 \end{aligned}$ | $\begin{aligned} & 1.19 \\ & 1.49 \\ & 2.09 \\ & 2.47 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.79 \\ & 0.95 \\ & 1.29 \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 0.38 \\ & 0.41 \\ & 0.46 \end{aligned}$ | $\begin{aligned} & 0.03 \\ & 0.03 \\ & 0.03 \\ & 0.03 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 45 |
| 1" SP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 4.03 \\ 7.63 \\ 15.82 \\ 19.37 \end{array}$ | $\begin{array}{r} 3.29 \\ 5.93 \\ 10.80 \\ 13.37 \end{array}$ | $\begin{aligned} & 2.48 \\ & 4.59 \\ & 7.47 \\ & 9.17 \end{aligned}$ | $\begin{aligned} & 2.02 \\ & 3.30 \\ & 4.74 \\ & 6.28 \end{aligned}$ | $\begin{aligned} & 1.50 \\ & 2.38 \\ & 3.18 \\ & 4.07 \end{aligned}$ | $\begin{aligned} & 0.98 \\ & 1.33 \\ & 1.96 \\ & 2.47 \end{aligned}$ | $\begin{aligned} & 0.58 \\ & 0.72 \\ & 0.95 \\ & 1.44 \end{aligned}$ | $\begin{aligned} & 0.34 \\ & 0.35 \\ & 0.36 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.02 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 30 |
| 1" FP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 5.88 \\ 12.34 \\ 26.91 \\ 40.62 \end{array}$ | $\begin{array}{r} 4.97 \\ 9.86 \\ 17.37 \\ 26.78 \end{array}$ | $\begin{array}{r} 4.25 \\ 7.50 \\ 12.47 \\ 17.96 \end{array}$ | $\begin{array}{r} 3.28 \\ 5.36 \\ 8.19 \\ 11.74 \end{array}$ | $\begin{aligned} & 2.14 \\ & 3.89 \\ & 5.45 \\ & 7.48 \end{aligned}$ | $\begin{aligned} & 1.74 \\ & 2.41 \\ & 3.45 \\ & 4.49 \end{aligned}$ | $\begin{aligned} & 1.06 \\ & 1.63 \\ & 2.16 \\ & 2.55 \end{aligned}$ | $\begin{aligned} & 0.84 \\ & 0.95 \\ & 0.97 \\ & 1.09 \end{aligned}$ | $\begin{aligned} & 0.22 \\ & 0.24 \\ & 0.26 \\ & 0.28 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 77 |
| 11/4" SP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 5.74 \\ 10.75 \\ 23.30 \\ 37.20 \end{array}$ | $\begin{array}{r} 5.09 \\ 9.40 \\ 15.59 \\ 26.09 \end{array}$ | $\begin{array}{r} 4.10 \\ 6.63 \\ 11.03 \\ 17.26 \end{array}$ | $\begin{array}{r} 3.13 \\ 5.04 \\ 8.11 \\ 10.44 \end{array}$ | $\begin{aligned} & 2.32 \\ & 3.55 \\ & 5.04 \\ & 6.91 \end{aligned}$ | $\begin{aligned} & 1.59 \\ & 2.30 \\ & 3.20 \\ & 4.37 \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 1.54 \\ & 1.96 \\ & 2.38 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.68 \\ & 0.95 \\ & 1.04 \end{aligned}$ | $\begin{aligned} & 0.21 \\ & 0.23 \\ & 0.24 \\ & 0.26 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 46 |
| 1 1/4" FP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{aligned} & 10.24 \\ & 20.10 \\ & 39.26 \\ & 70.96 \end{aligned}$ | $\begin{array}{r} 6.87 \\ 16.09 \\ 27.25 \\ 44.32 \end{array}$ | $\begin{array}{r} 6.86 \\ 12.17 \\ 19.36 \\ 29.44 \end{array}$ | $\begin{array}{r} 5.22 \\ 8.66 \\ 13.11 \\ 18.79 \end{array}$ | $\begin{array}{r} 3.73 \\ 6.09 \\ 8.82 \\ 11.83 \end{array}$ | $\begin{aligned} & 2.86 \\ & 4.22 \\ & 5.60 \\ & 7.44 \end{aligned}$ | $\begin{aligned} & 2.23 \\ & 2.55 \\ & 3.25 \\ & 4.51 \end{aligned}$ | $\begin{aligned} & 1.19 \\ & 1.67 \\ & 1.75 \\ & 2.32 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 0.56 \\ & 0.56 \\ & 0.75 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 26 |
| 11/2" SP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 9.90 \\ 20.13 \\ 37.09 \\ 66.22 \end{array}$ | $\begin{array}{r} 8.02 \\ 15.89 \\ 27.38 \\ 43.48 \end{array}$ | $\begin{array}{r} 6.72 \\ 12.12 \\ 19.01 \\ 28.48 \end{array}$ | $\begin{array}{r} 5.03 \\ 8.88 \\ 13.56 \\ 18.44 \end{array}$ | $\begin{array}{r} 4.42 \\ 6.58 \\ 9.17 \\ 12.28 \end{array}$ | $\begin{aligned} & 3.22 \\ & 4.50 \\ & 6.10 \\ & 8.08 \end{aligned}$ | $\begin{aligned} & 1.90 \\ & 2.38 \\ & 3.45 \\ & 4.51 \end{aligned}$ | $\begin{aligned} & 0.78 \\ & 1.00 \\ & 1.24 \\ & 1.68 \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 0.26 \\ & 0.28 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 82 |
| 1 1/2" FP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{aligned} & 12.76 \\ & 28.60 \\ & 55.73 \\ & 96.99 \end{aligned}$ | $\begin{aligned} & 11.06 \\ & 22.35 \\ & 40.16 \\ & 62.87 \end{aligned}$ | $\begin{array}{r} 7.65 \\ 15.23 \\ 26.54 \\ 38.90 \end{array}$ | $\begin{array}{r} 5.94 \\ 11.38 \\ 17.53 \\ 24.95 \end{array}$ | $\begin{array}{r} 5.21 \\ 8.30 \\ 11.87 \\ 15.69 \end{array}$ | $\begin{aligned} & 3.50 \\ & 5.48 \\ & 7.31 \\ & 9.73 \end{aligned}$ | $\begin{aligned} & 2.41 \\ & 2.46 \\ & 3.07 \\ & 5.46 \end{aligned}$ | $\begin{aligned} & 0.89 \\ & 1.37 \\ & 1.59 \\ & 2.37 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.46 \\ & 0.34 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 192 |
| 2" SP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{aligned} & 13.41 \\ & 27.15 \\ & 49.56 \\ & 80.14 \end{aligned}$ | $\begin{aligned} & 10.22 \\ & 20.92 \\ & 35.81 \\ & 52.63 \end{aligned}$ | $\begin{array}{r} 8.12 \\ 15.36 \\ 24.77 \\ 35.60 \end{array}$ | $\begin{array}{r} 5.98 \\ 11.54 \\ 17.20 \\ 23.75 \end{array}$ | $\begin{array}{r} 4.74 \\ 7.25 \\ 10.88 \\ 14.43 \end{array}$ | $\begin{aligned} & 3.88 \\ & 4.90 \\ & 7.21 \\ & 9.03 \end{aligned}$ | $\begin{aligned} & 2.43 \\ & 3.43 \\ & 4.10 \\ & 5.42 \end{aligned}$ | $\begin{aligned} & 1.28 \\ & 1.37 \\ & 1.71 \\ & 2.07 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.41 \\ & 0.37 \\ & 0.00 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 120 |
| 2" FP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 21.53 \\ 47.47 \\ 92.06 \\ 173.40 \end{array}$ | $\begin{array}{r} 16.98 \\ 37.46 \\ 69.69 \\ 110.49 \end{array}$ | $\begin{aligned} & 16.01 \\ & 27.32 \\ & 49.08 \\ & 73.44 \end{aligned}$ | $\begin{aligned} & 12.47 \\ & 20.75 \\ & 31.92 \\ & 48.50 \end{aligned}$ | $\begin{aligned} & 10.07 \\ & 14.12 \\ & 21.36 \\ & 29.56 \end{aligned}$ | $\begin{array}{r} 5.26 \\ 9.65 \\ 13.98 \\ 18.56 \end{array}$ | $\begin{array}{r} 4.43 \\ 6.53 \\ 8.52 \\ 11.54 \end{array}$ | $\begin{aligned} & 2.37 \\ & 3.05 \\ & 4.21 \\ & 5.13 \end{aligned}$ | $\begin{aligned} & 0.79 \\ & 1.15 \\ & 1.31 \\ & 1.44 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 358 |
| $21 / 2$ " SP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 18.63 \\ 41.74 \\ 83.22 \\ 139.40 \end{array}$ | $\begin{aligned} & 14.82 \\ & 33.58 \\ & 60.04 \\ & 89.84 \end{aligned}$ | $\begin{aligned} & 12.28 \\ & 26.16 \\ & 44.35 \\ & 61.63 \end{aligned}$ | $\begin{array}{r} 8.98 \\ 18.52 \\ 29.98 \\ 41.32 \end{array}$ | $\begin{array}{r} 7.00 \\ 13.60 \\ 20.41 \\ 27.57 \end{array}$ | $\begin{array}{r} 5.01 \\ 8.59 \\ 12.56 \\ 17.68 \end{array}$ | $\begin{aligned} & 3.09 \\ & 4.71 \\ & 7.33 \\ & 9.76 \end{aligned}$ | $\begin{aligned} & 1.97 \\ & 2.56 \\ & 3.71 \\ & 5.27 \end{aligned}$ | $\begin{aligned} & 0.49 \\ & 0.53 \\ & 0.65 \\ & 0.99 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 240 |
| 1/2" FP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 35.16 \\ 79.21 \\ 150.59 \\ 253.06 \end{array}$ | $\begin{array}{r} 29.35 \\ 63.94 \\ 107.54 \\ 180.69 \end{array}$ | $\begin{array}{r} 24.60 \\ 49.22 \\ 80.65 \\ 119.78 \end{array}$ | $\begin{aligned} & 19.68 \\ & 34.32 \\ & 52.93 \\ & 84.32 \end{aligned}$ | $\begin{aligned} & 14.70 \\ & 25.24 \\ & 34.89 \\ & 50.76 \end{aligned}$ | $\begin{aligned} & 10.63 \\ & 15.90 \\ & 22.72 \\ & 32.69 \end{aligned}$ | $\begin{array}{r} 7.63 \\ 9.98 \\ 14.87 \\ 21.11 \end{array}$ | $\begin{array}{r} 3.85 \\ 4.98 \\ 6.44 \\ 11.67 \end{array}$ | $\begin{aligned} & 1.32 \\ & 2.16 \\ & 2.02 \\ & 1.79 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 611 |
| 3" SP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 34.93 \\ 73.79 \\ 138.23 \\ 240.46 \end{array}$ | $\begin{array}{r} 23.88 \\ 56.60 \\ 101.69 \\ 154.55 \end{array}$ | $\begin{array}{r} 19.89 \\ 43.67 \\ 74.53 \\ 114.28 \end{array}$ | $\begin{aligned} & 16.25 \\ & 33.42 \\ & 51.94 \\ & 73.22 \end{aligned}$ | $\begin{aligned} & 13.56 \\ & 22.87 \\ & 34.94 \\ & 47.24 \end{aligned}$ | $\begin{aligned} & 10.52 \\ & 15.24 \\ & 21.55 \\ & 31.57 \end{aligned}$ | $\begin{array}{r} 7.60 \\ 10.22 \\ 13.98 \\ 17.96 \end{array}$ | $\begin{array}{r} 3.99 \\ 6.82 \\ 7.69 \\ 10.50 \end{array}$ | $\begin{aligned} & 2.18 \\ & 2.47 \\ & 2.14 \\ & 4.49 \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 0.69 \\ & 0.54 \\ & 0.21 \end{aligned}$ | 350 |
| 3" FP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 47.02 \\ 105.15 \\ 190.26 \\ 388.90 \end{array}$ | $\begin{array}{r} 32.65 \\ 80.57 \\ 136.08 \\ 235.03 \end{array}$ | $\begin{array}{r} 26.34 \\ 58.10 \\ 112.14 \\ 157.48 \end{array}$ | $\begin{aligned} & 19.84 \\ & 42.90 \\ & 82.22 \\ & 99.49 \end{aligned}$ | $\begin{aligned} & 15.89 \\ & 29.96 \\ & 54.10 \\ & 64.78 \end{aligned}$ | $\begin{array}{r} 12.27 \\ 19.58 \\ 27.6 \\ 38.4 \end{array}$ | $\begin{array}{r} 7.97 \\ 12.14 \\ 15.80 \\ 22.2 \end{array}$ | $\begin{array}{r} 3.98 \\ 5.04 \\ 13.54 \\ 11.64 \end{array}$ | $\begin{array}{r} 1.81 \\ 1.96 \\ 11.06 \\ 3.53 \end{array}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 858 |
| 4" SP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 44.07 \\ 95.43 \\ 171.46 \\ 283.27 \end{array}$ | $\begin{array}{r} 33.64 \\ 77.54 \\ 139.82 \\ 208.78 \end{array}$ | $\begin{array}{r} 27.16 \\ 57.24 \\ 103.63 \\ 147.71 \end{array}$ | $\begin{aligned} & 21.85 \\ & 42.34 \\ & 68.86 \\ & 98.21 \end{aligned}$ | $\begin{aligned} & 16.37 \\ & 28.95 \\ & 47.12 \\ & 62.96 \end{aligned}$ | $\begin{aligned} & 11.61 \\ & 19.77 \\ & 27.80 \\ & 41.66 \end{aligned}$ | $\begin{array}{r} 8.46 \\ 13.05 \\ 16.79 \\ 25.34 \end{array}$ | $\begin{array}{r} 4.82 \\ 6.04 \\ 7.85 \\ 10.82 \end{array}$ | $\begin{aligned} & 1.66 \\ & 2.06 \\ & 2.07 \\ & 3.15 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 607 |
| 4" FP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 58.97 \\ 160.29 \\ 332.17 \\ 652.17 \end{array}$ | $\begin{array}{r} 52.74 \\ 131.67 \\ 243.98 \\ 401.89 \end{array}$ | $\begin{array}{r} 43.58 \\ 100.78 \\ 174.60 \\ 262.88 \end{array}$ | $\begin{array}{r} 33.52 \\ 72.91 \\ 118.86 \\ 170.63 \end{array}$ | $\begin{array}{r} 25.93 \\ 53.71 \\ 81.15 \\ 111.42 \end{array}$ | $\begin{aligned} & 18.16 \\ & 35.10 \\ & 51.80 \\ & 73.39 \end{aligned}$ | $\begin{aligned} & 11.12 \\ & 19.49 \\ & 24.79 \\ & 43.49 \end{aligned}$ | $\begin{array}{r} 7.42 \\ 10.73 \\ 15.34 \\ 24.32 \end{array}$ | $\begin{aligned} & 3.66 \\ & 3.90 \\ & 6.48 \\ & 7.20 \end{aligned}$ | $\begin{aligned} & 1.65 \\ & 1.34 \\ & 1.01 \\ & 1.38 \end{aligned}$ | 1512 |
| 6" SP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 71.0 \\ 164.0 \\ 270.0 \\ 409.0 \end{array}$ | $\begin{array}{r} 58.0 \\ 129.0 \\ 213.0 \\ 329.0 \end{array}$ | $\begin{array}{r} 45.0 \\ 95.0 \\ 163.0 \\ 244.0 \end{array}$ | $\begin{array}{r} 35.0 \\ 70.0 \\ 115.0 \\ 166.0 \end{array}$ | $\begin{array}{r} 26.0 \\ 51.0 \\ 76.0 \\ 110.0 \end{array}$ | $\begin{aligned} & 20.0 \\ & 36.0 \\ & 51.0 \\ & 72.0 \end{aligned}$ | $\begin{aligned} & 13.0 \\ & 22.0 \\ & 31.0 \\ & 44.0 \end{aligned}$ | $\begin{array}{r} 7.0 \\ 11.0 \\ 15.0 \\ 22.0 \end{array}$ | $\begin{aligned} & 3.1 \\ & 4.1 \\ & 4.8 \\ & 7.4 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 1055 |
| 6" FP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 148.0 \\ 367.0 \\ 816.0 \\ 1292.0 \end{array}$ | $\begin{aligned} & 112.0 \\ & 286.0 \\ & 568.0 \\ & 890.0 \end{aligned}$ | $\begin{array}{r} 91.0 \\ 205.0 \\ 414.0 \\ 581.0 \end{array}$ | $\begin{array}{r} 76.0 \\ 146.0 \\ 272.0 \\ 382.0 \end{array}$ | $\begin{array}{r} 55.0 \\ 104.0 \\ 177.0 \\ 234.0 \end{array}$ | $\begin{array}{r} 40.0 \\ 70.0 \\ 110.0 \\ 145.0 \end{array}$ | $\begin{aligned} & 30.0 \\ & 47.0 \\ & 67.0 \\ & 88.0 \end{aligned}$ | $\begin{aligned} & 19.0 \\ & 25.0 \\ & 34.0 \\ & 45.0 \end{aligned}$ | $\begin{array}{r} 7.4 \\ 9.0 \\ 10.0 \\ 14.4 \end{array}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 3664 |
| 8" SP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 134.0 \\ 338.0 \\ 648.0 \\ 1106.0 \end{array}$ | $\begin{aligned} & 112.0 \\ & 270.0 \\ & 513.0 \\ & 768.0 \end{aligned}$ | $\begin{array}{r} 92.0 \\ 209.0 \\ 378.0 \\ 538.0 \end{array}$ | $\begin{array}{r} 86.0 \\ 159.0 \\ 260.0 \\ 360.0 \end{array}$ | $\begin{array}{r} 54.5 \\ 109.0 \\ 175.0 \\ 242.0 \end{array}$ | $\begin{array}{r} 35.5 \\ 75.0 \\ 112.0 \\ 148.0 \end{array}$ | $\begin{aligned} & 28.0 \\ & 46.0 \\ & 65.0 \\ & 82.0 \end{aligned}$ | $\begin{aligned} & 17.0 \\ & 24.0 \\ & 32.0 \\ & 42.0 \end{aligned}$ | $\begin{array}{r} 6.8 \\ 8.7 \\ 10.0 \\ 13.0 \end{array}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 2060 |
| 8" FP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 297.0 \\ 757.0 \\ 1650.0 \\ 2577.0 \end{array}$ | $\begin{array}{r} 255.0 \\ 566.0 \\ 1078.0 \\ 1682.0 \end{array}$ | $\begin{array}{r} 195.0 \\ 404.0 \\ 724.0 \\ 1065.0 \end{array}$ | $\begin{aligned} & 165.0 \\ & 294.0 \\ & 490.0 \\ & 664.0 \end{aligned}$ | $\begin{aligned} & 115.0 \\ & 195.0 \\ & 305.0 \\ & 400.0 \end{aligned}$ | $\begin{array}{r} 75.0 \\ 130.0 \\ 186.0 \\ 233.0 \end{array}$ | $\begin{array}{r} 49.0 \\ 70.8 \\ 100.0 \\ 125.0 \end{array}$ | $\begin{aligned} & 25.0 \\ & 30.0 \\ & 40.0 \\ & 48.0 \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 5.5 \\ & 5.7 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 77 |
| 10" SP | $\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$ | $\begin{array}{r} 289.0 \\ 683.0 \\ 1334.0 \\ 2176.0 \end{array}$ | $\begin{array}{r} 245.0 \\ 556.0 \\ 1014.0 \\ 1518.0 \end{array}$ | $\begin{array}{r} 190.0 \\ 393.0 \\ 714.0 \\ 1022.0 \end{array}$ | $\begin{aligned} & 153.0 \\ & 287.0 \\ & 483.0 \\ & 650.0 \end{aligned}$ | $\begin{aligned} & 105.0 \\ & 185.0 \\ & 298.0 \\ & 383.0 \end{aligned}$ | $\begin{array}{r} 70.0 \\ 125.0 \\ 182.0 \\ 222.0 \end{array}$ | $\begin{array}{r} 46.0 \\ 72.0 \\ 95.0 \\ 121.0 \end{array}$ | $\begin{aligned} & 20.0 \\ & 28.4 \\ & 36.0 \\ & 45.0 \end{aligned}$ | $\begin{aligned} & 4.8 \\ & 5.3 \\ & 5.5 \\ & 5.8 \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 5826 |

For valve sizes larger than 10", please contact Gosco Valves for C ivformation.

## M-CLASS PART NUMBERING SYSTEM <br> (e.g. part number: 09F1F1B17-7B717B10-GGS1U ${ }^{\text { }}$ )

| Size | Port | Bore | Connection | Pressure | Type | Body | Stem | Ball |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $01=1 / 2^{\prime \prime}$ | $\mathrm{S}=$ standard | 1 = Schedule 40 | $F=$ flanged | $1=150 \#$ | $\mathrm{C}=$ cast | SL $=316 \mathrm{~L}$ | 17 = Inconel 718 | B7 $=$ Borided Inconel 718 |
| $02=3 / 4^{\prime \prime}$ | $\mathrm{F}=$ full | 2 = Schedule 80 | S = socket weld | $2=300 \#$ | $\mathrm{B}=$ bar stock | $\mathrm{SH}=316 \mathrm{H}$ | $16=1 n c o n e l \mid 625$ | B6 = Borided Inconel 625 |
| $03=1$ " | $\mathrm{T}=$ true bore | 3 = Schedule 160 | $\mathrm{B}=$ butt weld | $3=600 \%$ | $\mathrm{F}=$ forging | $\mathrm{SS}=316 \mathrm{SS}$ | $\mathrm{S7}=17-4 \mathrm{Ph}$ | 17 = Inconel 718 |
| $04=11 / 4^{\prime \prime}$ | - | 4 = Schedule 5S | X $=$ extended BW | 4 = 900\# | $\mathrm{O}=$ other | CS $=$ Carbon Steel | SS $=316$ SS | $16=$ Inconel 625 |
| $05=11 / 2^{\prime \prime}$ | - | 5 = Schedule 10 S | $R=R T J$ | $5=1500 \#$ | - | F1 $=11 / 4$ Chrome | $\mathrm{SH}=316 \mathrm{H}$ | SS $=316$ SS |
| $06=2$ " | - | 6 = Schedule 120 | $\mathrm{N}=$ NPT | $6=2500 \#$ | - | F2 $=21 / 4.4$ Chrome | SL $=316 \mathrm{~L}$ | $\mathrm{SH}=316 \mathrm{H}$ |
| $07=21 / 2^{\prime \prime}$ | - | 7 = Schedule XXS | $\mathrm{G}=\mathrm{Grayl}^{\text {co }}{ }^{\text {® }}$ | $7=4500$ \# | - | F9 = 9 Chrome | A2 $=$ Alloy 20 | SL $=316 \mathrm{~L}$ |
| $08=3{ }^{\prime \prime}$ | - | $\mathrm{O}=$ other | $\mathrm{O}=$ other | $\mathrm{O}=$ other | - | HC = Hastelloy C276 | HB $=$ Hastelloy B | KS = Kolsterised Ball |
| $09=4 "$ | - | - | - | - | - | HB $=$ Hastelloy B | HC = Hastelloy C276 | A2 $=$ Alloy 20 |
| $10=6{ }^{\prime \prime}$ | - | - | - | - | - | DP = Duplex | H2 $=$ Hastelloy C22 HS | HB $=$ Hastelloy B |
| $11=8{ }^{\prime \prime}$ | - | - | - | - | - | SP = Super Duplex | DP $=$ Duplex Stainless | HC = Hastelloy C |
| $12=10^{\prime \prime}$ | - | - | - | - | - | A1 = Alloy 20 | SP = Super Duplex | DP = Duplex Stainless |
| $13=12^{\prime \prime}$ | - | - | - | - | - | $16=$ Inconel 625 | T2 2 Titanium, Gr. 2 | SP $=$ Super Duplex |
| $14=14^{\prime \prime}$ | - | - | - | - | - | $17=$ Inconel 718 | T3 3 Titanium, Gr. 3 | S6 = Stellite 6 |
| $15=16^{\prime \prime}$ | - | - | - | - | - | T2 = Titanium, Gr. 2 | T5 = Titanium, Gr. 5 | T2 = Titanium, Gr. 2 |
| - | - | - | - | - | - | T3 $=$ Titanium, Gr. 3 | M4 $=$ Monel 400 | T3 $=$ Titanium, Gr. 3 |
| - | - | - | - | - | - | T5 = Titanium, Gr. 5 | M5 = Monel 500 | T5 $=$ Titanium, Gr. 5 |
| - | - | - | - | - | - | M4 = Monel 400 | Z2 = Zirconium 702 | CC = chrome carbide coating |
| - | - | - | - | - | - | M5 = Monel 500 | z5 = Zirconium 705 | TC = tungsten carbide coating |
| - | - | - | - | - | - | Z2 = Zirconium 702 | OT = other | $C R=$ Ceramic |
| - | - | - | - | - | - | Z5 = Zirconium 705 | - | M4 = Monel 400 |
| - | - | - | - | - | - | OT = other | - | M5 = Monel 500 |
| - | - | - | - | - | - | - | - | Z2 = Zirconium 702 |
| - | - | - | - | - | - | - | , | OT = other |

†Example valve: $4^{\prime \prime}$, full port, schedule 40, 150\# flanged, bar stock Inconel 718 body and stem, Borided Inconel 718 ball and seats, $10^{\circ}$ V-Ball, graphoil packing, gear box, scalloped seat with oxygen cleaning, unidirectional 1) Please visit www.mclassvalve.com to download up-to-date part ordering information

## WARRANTY

WARRANTY - The Seller warrants its products against defects in material or workmanship, when used on those services approved by the Seller, for a period of one (1) year from date of original shipment. The Seller's liability under this warranty shall be limited to repair or replacement at Seller's option of such defective products, F.O.B. factory, upon proof of defect satisfactory to Seller. Seller shall have no further liability for damages of any kind, including but not limited to personal injuries and property damage, resulting from use of Seller's product. This warranty is expressly in lieu of all other warranties, either express or implied, including any implied warranty as to merchantability or fitness for any particular purpose. Special and consequential damages: In no event shall Seller be liable for any consequential or special damages arising from any breach of these terms and conditions from the use of its products.

| Seat | Ball Profile | Packing | Handle | Special | Direction |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 17B = Inconel 718, borided | $10=10^{\circ}$ V-Ball | $\mathrm{C}=$ PTFE chevron | A = actuated | $\mathrm{DB}=$ drilled ball (upstream side) | $\mathrm{U}=$ Unidirectional |
| I6B = Inconel 625, borided | $30=30^{\circ}$ V-Ball | $\mathrm{G}=$ standard graphoil | $B=$ bare shaft | $3 \mathrm{~W}=3-\mathrm{way}$ diverter | $B=$ Bidirectional |
| HCB $=$ Hastelloy C, borided | $60=60^{\circ}$ V-Ball | $\mathrm{Y}=$ cryogenic | $\mathrm{T}=$ tee handle | $\mathrm{O} 2=0 x y g e n$ cleaning | - |
| HBB = Hastelloy B, borided | $90=90^{\circ}$ V-Ball | $\bullet$ | $\mathrm{G}=$ gear box | SC = scalloped seat | - |
| CER $=$ ceramic | LN = linear V-Ball | - | L = lever | $\mathrm{S} 1=\mathrm{SC}+\mathrm{O} 2$ | - |
| EGR = encapsulated graphite | $\mathrm{HT}=$ high turndown V | - | $\mathrm{K}=$ lock-out | $\mathrm{S} 2=\mathrm{SC}+3 \mathrm{~W}$ | - |
| ZR2 = Zirconium 702 | FL $=$ filler V-Ball | - | $1=T+K$ | $\mathrm{S} 4=\mathrm{DB}+\mathrm{O} 2$ | - |
| ZR5 = Zirconium 705 | AR = arcuate cut | - | $2=G+K$ | $\mathrm{S} 6=3 \mathrm{~W}+\mathrm{O} 2$ | - |
| ST6 $=$ Stellite 6 | AC = anti-cavitation | - | $3=L+K$ | $\mathrm{OT}=$ other | - |
| CCC = chrome carbide coating | $\mathrm{OT}=$ other | - | $4=A+K$ | NS = no special | - |
| TCC = tungsten carbide coating | $\mathrm{NO}=$ none | - | $\mathrm{O}=$ other | - | - |
| OTH = other | $\bullet$ | - | - | - | - |
| - | - | - | - | - | - |
| - | - | - | - | - | - |
| - | - | - | - | - | - |
| - | $\bullet$ | - | - | - | $\bullet$ |
| - | - | - | - | - | - |
| - | - | $\bullet$ | - | - | - |
| - | - | - | - | - | - |
| - | - | - | - | - | - |
| - | - | - | - | - | - |
| - | - | $\bullet$ | - | $\bullet$ | $\bullet$ |
| - | - | - | - | - | - |
| - | - | - | - | - | - |

## DESIGN SPECIFICATIONS

- ASTM A 194/A193M-96b Alloy Steel and Stainless Steel Bolting Materials for High Temperature Service
- ASTM A 194/A194M-96 Carbon and Alloy Steel Nuts for High Pressure and High Temperature Service
- ANSI/ASME B1.3M Screw Thread Gauging System for Dimensional Acceptability
- ANSI/ASME B16.10 Face-to-Face and End-to-End Dimensions of Valves
- ANSI/ASME B16.34 Valves-Flanged, Threaded and Welding Ends
- MSS SP-25 Standard Marking System for Marking Valves, Fittings, Flanges and Unions
- CSA B51-95 Boiler, Pressure Vessel and Pressure Piping Code
- Mill certificates and additional non-destructive testing are available if required
- API 608 Metal Ball Valves - Flanged, Threaded and Welding ends
- API 598 Valve Inspection and Testing
- API 6D Pipeline Valves
- ISO 9001: 2000


## GOSCOVALVES.com

1272 Speers Rd Unit 4 Oakville ON L6L 5T9
905.825.2627

